A Generalization of an Inequality of V. Markov to Multivariate Polynomials, II

HEINZ-JOACHIM RACK

Universität Dortmund, Abteilung Mathematik, Postfach 500500, D-4600 Dortmund 50, West Germany

Communicated by T. J. Rivlin

Received September 30, 1982

If P_m^r is a polynomial of total degree $m \ (\ge 2)$ in $r(\ge 1)$ variables, then each of its coefficients with degree m-1 is bounded in absolute value by $||P_m^r||$ times a product of the absolute values of coefficients of univariate Chebyshev polynomials (the uniform norm is taken on the *r*-dimensional unit cube). This result generalizes a well-known inequality for univariate polynomials which is due to V. Markov. By a counterexample we demonstrate that such a bound does not hold for the coefficients with degree $\le m-2$.

1. INTRODUCTION

A classical result of V. Markov [2] concerning the size of polynomial coefficients is the following set of sharp inequalities: If $P_m(x) = \sum_{k=0}^m a_k x^k$ is an arbitrary real-valued (univariate) polynomial with norm $||P_m|| := \max |P_m(x)| \le 1$, where $x \in I := [-1, 1]$, and $T_m(x) = \sum_{k=0}^m t_k^{(m)} x^k$ denotes the *m*th Chebyshev polynomial of the first kind with respect to *I*, then

$$|a_k| \leqslant \begin{cases} |t_k^{(m)}|, & \text{if } k \equiv m \mod 2\\ |t_k^{(m-1)}|, & \text{if } k \equiv m-1 \mod 2 \end{cases}$$
(1)

(see also [3, p. 56] or [9, p. 167]). The integer coefficients $t_k^{(m)}$ are explicitly known (cf. [8, p. 32]). The case k = m is originally due to Chebyshev [1]; see also [8, p. 57]:

$$|a_m| \leqslant 2^{m-1}.\tag{2}$$

Here we consider extensions of (1) to multivariate polynomials P_m^r of total degree $\leq m \in \mathbb{N}$ on the unit cube I^r , $r \ge 1$. The following notation will be used:

$$P_{m}^{r}(\mathbf{x}) = \sum_{|\mathbf{k}| \leq m} b_{\mathbf{k}} \mathbf{x}^{\mathbf{k}}, \qquad b_{\mathbf{k}} \in \mathbb{R},$$
(3)

HEINZ-JOACHIM RACK

with $\mathbf{x} = (x_1, ..., x_r) \in \mathbb{R}^r$, $\mathbf{k} = (k_1, ..., k_r) \in \mathbb{N}_0^r$, $\mathbf{x}^{\mathbf{k}} = x_1^{k_1} \cdots x_r^{k_r}$, and $|\mathbf{k}| = k_1 + \cdots + k_r$. We put $||P_m^r|| := \max |P_m^r(\mathbf{x})|$, where $\mathbf{x} \in I^r$, and denote by \mathbb{P}_m^r the linear space of polynomials given by (3). According to [7, Corollary 3] the following generalization of (2) holds:

$$|b_{\mathbf{k}}| \leqslant 2^{m-\bar{r}} \qquad \text{if } |\mathbf{k}| = m \text{ and } \|P_{m}^{r}\| \leqslant 1 \tag{4}$$

with equality if $P_m^r(\mathbf{x}) = \prod_{q=1}^r T_{k_q}(x_q)$, where \bar{r} denotes the number of nonvanishing components of **k**. (An alternative proof of an extension of (4) is given in [4, Satz 1.5].)

Here we show that an estimate analogous to that in (4) holds for each b_k with $|\mathbf{k}| = m - 1$ ($m \ge 2$). By a counterexample we then demonstrate that neither products nor any rational functions of coefficients of (univariate) Chebyshev polynomials are enough to majorize the b_k 's if $|\mathbf{k}| \le m - 2$.

2. RESULTS AND PROOFS

We begin with an auxiliary result.

LEMMA. Let $\mathbf{k} \in \mathbb{N}'_0$ with $|\mathbf{k}| = m - 1 \in \mathbb{N}$ be arbitrary but fixed; let $\overline{\mathbb{P}}'_m := \operatorname{span}\{\mathbf{x}^{\mathbf{k}'}: |\mathbf{k}'| \leq m, \ \mathbf{k}' \neq \mathbf{k}\}$ denote that subspace of \mathbb{P}'_m whose basis does not contain the monomial $\mathbf{x}^{\mathbf{k}}$. Define sets $J_q := \{0, ..., k_q + 1\} \setminus \{k_q\}$ and

$$V := \left\{ \sum_{q=1}^{r} \sum_{j_q \in J_q} x_q^{j_q} G_{j_q}(x_1, ..., x_{q-1}, x_{q+1}, ..., x_r) \right\},$$
(5)

where the G_{j_q} 's are continuous functions on I^{r-1} . Then the inclusion $\overline{\mathbb{P}}_m^r \subset V$ holds.

Proof. Because of the arbitrariness of the functions G_{j_q} it suffices to show that $\mathbf{x}^{\mathbf{k}'} \in V$ if $\mathbf{k}' \in \mathbb{N}_0^r$ and $|\mathbf{k}'| \leq m$ (but $\mathbf{k}' \neq \mathbf{k}$). The following observations concerning the components k'_q of \mathbf{k}' and k_q of \mathbf{k} are easy to verify: (i) if $|\mathbf{k}'| \leq m-1$ (but $\mathbf{k}' \neq \mathbf{k}$), then there exist k'_q and k_q with $k'_q < k_q$; (ii) if $|\mathbf{k}'| = m$, then there exist k'_q and k_q with $k'_q < k_q + 1$.

In those cases where $k'_q < k_q$ for some $q \in \{1,...,r\}$ the monomial $\mathbf{x}^{\mathbf{k}'}$ can be written as $x_q^{k'_q} G(x_1,...,x_{q-1},x_{q+1},...,x_r)$ with a suitable continuous function G and $k'_q \in \{0,...,k_q-1\} \subset J_q$. If $k'_q = k_q + 1$ for some $q \in \{1,...,r\}$ we may write $\mathbf{x}^{\mathbf{k}'}$ as $x_q^{k'_q} H(x_1,...,x_{q-1},x_{q+1},...,x_r)$ with a suitable continuous function H and $k'_q \in \{k_q+1\} \subset J_q$. In both cases $\mathbf{x}^{\mathbf{k}'}$ can be identified with an element of V.

THEOREM. Let
$$P_m^r \in \mathbb{P}_m^r$$
 with $\|P_m^r\| \leq 1$; let $\mathbf{k} \in \mathbb{N}_0^r$ with $|\mathbf{k}| = m - 1 \in \mathbb{N}$

be arbitrary but fixed and denote by \overline{r} the number of nonvanishing components k_a of **k**. Then the coefficients b_k of P_m^r satisfy the estimate

$$|b_{\mathbf{k}}| \leqslant 2^{m-\overline{r}-1} \qquad (|\mathbf{k}|=m-1) \tag{6}$$

with equality if $P_m^r(\mathbf{x}) = \prod_{q=1}^r T_{k_q}(x_q) \in \mathbb{P}_{m-1}^r \subset \mathbb{P}_m^r$.

Proof. Let \overline{T}_m denote the *m*th Chebyshev polynomial normalized so that its leading coefficient is 1. A theorem of Markov (cf. [2, pp. 231, 237] or [3, p. 53]) states that

$$x_q^{k_q} - \bar{T}_{k_q}(x_q)$$

is the best L^{∞} -approximation to the monomial $x_q^{k_q}$ on I from the space span $\{1, x_q, ..., x_q^{k_q-1}, x_q^{k_q+1}\}$. With the aid of Theorem 2.6.7 in [10] we infer from this that

$$\mathbf{x}^{\mathbf{k}} - \prod_{q=1}^{r} \overline{T}_{k_q}(x_q) \tag{7}$$

is a best L^{∞} -approximation to $\mathbf{x}^{\mathbf{k}}$ on I' from the set V as defined in (5) and hence also from $\overline{\mathbb{P}}_m^r \subset V$ (see the preceding Lemma) since (7) belongs to $\overline{\mathbb{P}}_m^r$. The required estimate is then obtained as follows:

$$|b_{\mathbf{k}}| \leq \|P_{m}^{r}\| \left(\inf_{\overline{P}_{m}^{r}\in\overline{P}_{m}^{r}}\max_{\mathbf{x}\in I^{r}}|\mathbf{x}^{\mathbf{k}}-\overline{P}_{m}^{r}(\mathbf{x})|\right)^{-1}$$
$$\leq \left\|\prod_{q=1}^{r}\overline{T}_{k_{q}}\right\|^{-1} = \left(\prod_{q=1}^{r}\|\overline{T}_{k_{q}}\|\right)^{-1} = 2^{m-\bar{r}-1}$$
(8)

(cf. [9, Satz 1.2] or [11, p. 86]).

In the light of the inequalities (1), (4) and (6) it is reasonable to ask whether the coefficients $b_{\mathbf{k}}$ in P'_m with $||P'_m|| \leq 1$ will also be maximized by a product of coefficients of (univariate) Chebyshev polynomials if $|\mathbf{k}| \leq m-2$. If this were true one would have a complete multivariate analogue to Markov's inequalities (1). However, the answer is in the negative as we show by a counterexample.

EXAMPLE. Let m = 4, r = 2 and put $\mathbf{k} = (k_1, k_2) := (k, l)$ and $\mathbf{x} = (x_1, x_2) := (x, y)$. Our aim is to determine the largest coefficient $b_{(1,1)}$ (in absolute value) among all $P_4^2(x, y) = \sum_{0 \le k+l \le 4} b_{(k,l)} x^k y^l$ with $||P_4^2|| \le 1$. Observe that for $\mathbf{k} = (k, l) = (1, 1)$ we now have $|\mathbf{k}| = 2 = m - 2$. It is interesting to note that the proof of our Theorem cannot be imitated here since $\overline{\mathbb{P}}_4^2 := \operatorname{span}\{x^k y^l : 0 \le k+l \le 4, (k, l) \ne (1, 1)\}$ is no subset of the set V as defined in (5). In fact, we now have

 $V = \{G_0(y) + x^2G_2(y) + H_0(x) + y^2H_2(x): G_0, G_2, H_0, H_2 \text{ continuous on } I\}$ but from this set the monomials x^3y and xy^3 cannot be recovered. To reach our aim we shall apply the same reasoning as in (8). To this end, we have to compute a best L^{∞} -approximation to f(x, y) := xy on I^2 from $\overline{\mathbb{P}}_4^2$. This function is symmetric and odd in each of its variables; a best approximation to f with the same properties belongs necessarily to the one-dimensional subspace

$$W_A := \{ w_A : w_A(x, y) = A(x^3y + xy^3), A \in \mathbb{R} \}$$
(9)

of $\overline{\mathbb{P}}_{4}^{2}$. It suffices to determine a best approximation to f from W_{A} . Investigating the function

$$F_A := f - w_A \tag{10}$$

on I^2 , partial differentiation yields the result that for

$$A = A' = (1 + 2^{1/2})/4, \tag{11}$$

 $F_{A'}$ alternates at the eight points $(x, y) = (\pm 1, \pm 1)$ and $(x, y) = (\pm z, \pm z)$, where $z := (2^{1/2} - 1)^{1/2}$. To be specific, $F_{A'}(x, y) = ||F_{A'}|| = (2^{1/2} - 1)/2$ if

$$(x, y) \in M^+ := \{(z, z), (1, -1), (-z, -z), (-1, 1)\} \subset I^2$$

and $F_{A'}(x, y) = -\|F_{A'}\|$ if

$$(x, y) \in M^- := \{(1, 1), (z, -z), (-1, -1), (-z, z)\} \subset I^2.$$

There is no $w_A \in W_A$ which is positive on M^+ and negative on M^- . Indeed, if $w_A > 0$ on M^+ then in particular $w_A(z, z) > 0$ and hence A > 0. On the other hand, if $w_A < 0$ on M^- then in particular $w_A(1, 1) < 0$ and hence A < 0, a contradiction.

We conclude from [10, Lemma 2.2.1] that $F_{A'}$ is the error-function of a best L^{∞} -approximation to f on I^2 from W_A . Hence we obtain

$$|b_{(1,1)}| \leq ||P_4^2|| \, ||F_{A'}||^{-1} \leq ||F_{A'}||^{-1} = 2(1+2^{1/2}), \tag{12}$$

with equality if $P_4^2(x, y) = 2(1 + 2^{1/2}) F_{A'}(x, y)$.

3. Remarks

(i) An alternative generalization of the cases k = m and k = m - 1 in Markov's inequalities (1) to the polynomial space \mathbb{P}_m^r is to be found in [5].

(ii) A complete extension of (1) to multivariate polynomials is possible if we consider tensorproduct polynomials rather than polynomials with bounded total degree (cf. [6]).

(iii) The results presented here are excerpted from [4].

References

- 1. P. L. CHEBYSHEV (TCHEBYCHEF), Théorie des mécanismes connus sous le nom de parallélogrammes, *in* "Œuvres," Vol. I, Chelsea, New York, 1962.
- 2. V. MARKOV (W. MARKOFF), Über Polynome, die in einem gegebenem Intervalle möglichst wenig von Null abweichen, Math. Ann. 77 (1916), 213–258. [Russian 1892]
- 3. I. P. NATANSON, "Constructive Function Theory," Vol. I, Ungar, New York, 1964.
- 4. H.-J. RACK, Doctoral dissertation, Universität Dortmund, April, 1982.
- 5. H.-J. RACK, A generalization of an inequality of V. Markov to multivariate polynomials, J. Approx. Theory 35 (1982), 94-97.
- H.-J. RACK, Koeffizientenabschätzungen bei Polynomen in mehreren Variablen, Z. Angew. Math. Mech. 63 (1983), No. 5, T371-T372.
- 7. M. REIMER, On multivariate polynomials of least deviation from zero on the unit cube, J. Approx. Theory 23 (1978), 65-69.
- 8. T. J. RIVLIN, "The Chebyshev Polynomials," Wiley, New York, 1974.
- 9. A. SCHÖNHAGE, "Approximationstheorie," de Gruyter, Berlin, 1971.
- 10. H. S. SHAPIRO, "Topics in Approximation Theory," Lecture Notes in Mathematics No. 187, Springer-Verlag, New York/Berlin, 1971.
- 11. A. TIMAN, "Theory of Approximation of Functions of a Real Variable," Pergamon, Oxford, 1963.