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if P}, is a polynomial of total degree m (>2) in r(>>1) variables, then each of its
coefficients with degree m — 1 is bounded in absolute value by [Pl times a
product of the absolute values of coefficients of univariate Chebyshev polynomials
(the uniform norm is taken on the r-dimensional unit cube). This result generalizes
a well-known inequality for univariate polynomials which is due to V. Markov. By
a counterexample we demonstrate that such a bound does not hold for the coef-
ficients with degree <m — 2.

1. INTRODUCTION

A classical result of V. Markov [2] concerning the size of polynomial
coefficients is the following set of sharp inequalities: If P, ,(x) = >'7_, a, x* is
an  arbitrary real-valued (univariate) polynomial with norm
| Pl := max | P, (x)| <1, where x €I :=|—1, 1|, and T (x) =Y, 1™ x*
denotes the mth Chebyshev polynomial of the first kind with respect to 1,
then

[, if k = mmod 2

<
la.| < |#m=1), ifk=m—1mod 2

(D)
(see also [3, p. 56] or [9, p. 167]). The integer coefficients ¢{™ are explicitly
known (cf. [8, p. 32]). The case k =m is originally due to Chebyshev [1];
see also [8,p. 57]:

la, | <2m )

Here we consider extensions of (1) to multivariate polynomials P!, of total
degree <m € N on the unit cube I, r > 1. The following notation will be
used:
PL(x)= > bexb b,eR, (3)
Ikl <m
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with X = (X, X,) ER’, k= (k;pn k) ENS, x*=xk1... x5 and |k|=
k,+---+k,. We put ||P] _maxtP x)|, where x €I', and denote by P},
the linear space of polynomials given by (3). According to |7, Corollary 3]

the following generalization of (2) holds:
bl <2777 if [k| =mand | P},] < (4)

with equality if P(x)=]],_, T, X ), where 7 denotes the number of
nonvanishing components of k. (An alternative proof of an extension of (4)
is given in [4, Satz 1.5].)

Here we show that an estimate analogous to that in (4) holds for each b,
with |k|=m—1 (m>2). By a counterexample we then demonstrate that
neither products nor any rational functions of coefficients of (univariate)
Chebyshev polynomials are enough to majorize the s if [k| < m — 2.

2. RESULTS AND PROOFS
We begin with an auxiliary result.

LEMMA. Let k€ Nj with |k|=m—1€N be arbitrary but fixed; let
P :=span{x*: |k’'| < m, k' ;&k} denote that subspace of P, whose basis
does not contain the monomial x*. Define sets J, := {0,.., k, + 1}\{k,} and

DD X G Xy Xy Xg g s %) | (5)

g=1 jqelq

where the G, ’s are continuous functions on I”~". Then the inclusion P}, < ¥
holds.

Proof Because of the arbitrariness of the functions G; it suffices to show
that x*' € V if k' € Nj and |k’| < m (but k’ # k). The followmg observations
concerning the components k, of k' and k, of k are easy to verify: (i) if
k') <m—1 (but k' # k), then there exist k; and k, with k; <k,; (ii) if
|k’| = m, then there exist k/ and k, with k/ < k, or with k; =k, + 1.

In those cases where k; < k, for some g € {1,..., r} the monomial x¥ can
be written as x’;é G(X| 50y Xg_ 15X, 15 X,) With a suitable continuous
function G and &, € {0,..., k,— 1} = J,. If k; =k, + 1 for some g € {1,..., r}
we may write x*' as x% H(x,,..., X,_ 1, X, 1, X,) With a suitable continuous
function H and k, € {k,+ 1} < J,. In both cases x*' can be identified with
an element of V. |

THEOREM. Let P, € P! with ||Pl,{| < 1; let k € N{ with [k|=m—1€N
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be arbitrary but fixed and denote by F the number of nonvanishing
components k, of k. Then the coefficients b, of P, satisfy the estimate

bl<2" (kl=m—1) (6)
with equality if P, (x)=1[T;_, T, (X)) EPL_ =P,

Proof. Let Tm denote the mth Chebyshev polynomial normalized so that
its leading coefficient is 1. A theorem of Markov (cf. |2, pp. 231, 237] or
[3, p. 53}) states that

xka— qu(xq)

is the best L*®-approximation to the monomial x’;q on [ from the space span
{1, X0, Xha !, xka* 1}, With the aid of Theorem 2.6.7 in [10] we infer from
this that

-

x¥— ] qu(xq) (7

q=1

is a best L*-approximation to x¥ on I" from the set V as defined in (5) and
hence also from P7 < V' (see the preceding Lemma) since (7) belongs to P, .
The required estimate is then obtained as follows:

—1
b <125 ( inf max |t~ P

PPl xel
—1

<|

q[rll T,| = (qfrll Ilfqu)l =2m-7-! ®)

(cf. [9, Satz 1.2] or [11,p.86]). §

In the light of the inequalities (1), (4) and (6) it is reasonable to ask whether
the coefficients b, in P/, with || P, || < 1 will also be maximized by a product
of coefficients of (univariate) Chebyshev polynomials if |k| < m — 2. If this
were true one would have a complete multivariate analogue to Markov’s
inequalities (1). However, the answer is in the negative as we show by a
counterexample.

EXAMPLE. Let m=4, r=2 and put k=(k, k,):=(k,{) and x=
(x5 x;) = (x, ). Our aim is to determine the largest coefficient b ;, (in
absolute value) among all Pi(x,y)= 30 isca bu.px*y' with [P < L.
Observe that for k=(k,/)=(1,1) we now have [k|=2=m—2. It
is interesting to note that the proof of our Theorem cannot be imitated
here since P2:=spani{x*y':0<k+1<4, (k1) # (1,1)} is no subset
of the set V as defined in (5). In fact, we now have
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V={Go(y) +x*G,(y) + Hy(x) + y’H,(x): Gy, G,, H,, H, continuous on I}
but from this set the monomials x’y and xy* cannot be recovered. To reach
our aim we shall apply the same reasoning as in (8). To this end, we have to
compute a best L*-approximation to f(x,y):=xy on I’ from P2. This
function is symmetric and odd in each of its variables; a best approximation
to f with the same properties belongs necessarily to the one-dimensional
subspace

W= {wow, () =4y +xp"), 4 € R} 9)

of fﬁﬁ. It suffices to determine a best approximation to f from W,.
Investigating the function

Fomf—w, (10)
on I?, partial differentiation yields the result that for
A=A4"=(+12"%)/4, (11)

F,. alternates at the eight points (x,p)=(x1, +1) and (x,y)=(tz, +z),
where z := (2! — 1)V/2 To be specific, F,.(x,y) =||F,.||= 2'* — 1)/2 if

xY)EM' := {(z,2), (1,-1), (—z,—2), (=1, D} = I?
and F,(x,y)=—|F,| if
(x,y)eM‘ = {(1’ 1)5 (Zv —Z), (_13 _1)5 (—Z’ Z)} Y&

There is no w, € W, which is positive on M* and negative on M ~. Indeed,
if w,>0 on M™ then in particular w,(z,z} > O and hence 4 > 0. On the
other hand, if w, <0 on M~ then in particular w,(1,1) <0 and hence
A < 0, a contradiction.

We conclude from [10, Lemma 2.2.1] that F,, is the error-function of a
best L ®-approximation to f on /* from W,. Hence we obtain

b STPANF N~ NE, )71 =201+ 217, (12)

with equality if Pi(x,y)=2(1 +2V*) F,(x,»). 1

3. REMARKS

(i) An alternative generalization of the cases k=m and k=m — 1 in
Markov’s inequalities (1) to the polynomial space P/, is to be found in [5].

(ii) A complete extension of (1) to multivariate polynomials is
possible if we consider tensorproduct polynomials rather than polynomials
with bounded total degree (cf. [6]).

(ifi) The results presented here are excerpted from [4].
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