A Generalization of an Inequality of V. Markov to Multivariate Polynomials, II

Heinz-Joachim Rack
Universität Dortmund, Abteilung Mathematik, Postfach 500500, D-4600 Dortmund 50, West Germany

Communicated by T. J. Rivlin
Received September 30, 1982

Abstract

If P_{m}^{r} is a polynomial of total degree $m(\geqslant 2)$ in $r(\geqslant 1)$ variables, then each of its coefficients with degree $m-1$ is bounded in absolute value by $\left\|P_{m}^{r}\right\|$ times a product of the absolute values of coefficients of univariate Chebyshev polynomials (the uniform norm is taken on the r-dimensional unit cube). This result generalizes a well-known inequality for univariate polynomials which is due to V. Markov. By a counterexample we demonstrate that such a bound does not hold for the coefficients with degree $\leqslant m-2$.

1. Introduction

A classical result of V . Markov [2] concerning the size of polynomial coefficients is the following set of sharp inequalities: If $P_{m}(x)=\sum_{k=0}^{m} a_{k} x^{k}$ is an arbitrary real-valued (univariate) polynomial with norm $\left\|P_{m}\right\|:=\max \left|P_{m}(x)\right| \leqslant 1$, where $x \in I:=\lfloor-1,1]$, and $T_{m}(x)=\sum_{k=0}^{m} t_{k}^{(m)} x^{k}$ denotes the m th Chebyshev polynomial of the first kind with respect to I, then

$$
\left|a_{k}\right| \leqslant \begin{cases}\left|t_{k}^{(m)}\right|, & \text { if } k \equiv m \bmod 2 \tag{1}\\ \left|t_{k}^{(m-1)}\right|, & \text { if } k \equiv m-1 \bmod 2\end{cases}
$$

(see also [3, p. 56] or [9, p. 167]). The integer coefficients $t_{k}^{(m)}$ are explicitly known (cf. [8, p. 32]). The case $k=m$ is originally due to Chebyshev [1]; see also [8, p. 57]:

$$
\begin{equation*}
\left|a_{m}\right| \leqslant 2^{m-1} \tag{2}
\end{equation*}
$$

Here we consider extensions of (1) to multivariate polynomials P_{m}^{r} of total degree $\leqslant m \in \mathbb{N}$ on the unit cube $I^{r}, r \geqslant 1$. The following notation will be used:

$$
\begin{equation*}
P_{m}^{r}(\mathbf{x})=\sum_{|\mathbf{k}| \leqslant m} b_{\mathbf{k}} \mathbf{x}^{\mathbf{k}}, \quad b_{\mathbf{k}} \in \mathbb{R} \tag{3}
\end{equation*}
$$

129
with $\mathbf{x}=\left(x_{1}, \ldots, x_{r}\right) \in \mathbb{R}^{r}, \mathbf{k}=\left(k_{1}, \ldots, k_{r}\right) \in \mathbb{N}_{0}^{r}, \mathbf{x}^{\mathbf{k}}=x_{1}^{k_{1}} \cdots x_{r}^{k_{r}}$, and $|\mathbf{k}|=$ $k_{1}+\cdots+k_{r}$. We put $\left\|P_{m}^{r}\right\|:=\max \left|P_{m}^{r}(\mathbf{x})\right|$, where $\mathbf{x} \in I^{r}$, and denote by \mathbb{P}_{m}^{r} the linear space of polynomials given by (3). According to [7, Corollary 3] the following generalization of (2) holds:

$$
\begin{equation*}
\left|b_{k}\right| \leqslant 2^{m-\bar{r}} \quad \text { if }|\mathbf{k}|=m \text { and }\left\|P_{m}^{r}\right\| \leqslant 1 \tag{4}
\end{equation*}
$$

with equality if $P_{m}^{r}(\mathbf{x})=\prod_{q=1}^{r} T_{k_{q}}\left(x_{q}\right)$, where \bar{r} denotes the number of nonvanishing components of \mathbf{k}. (An alternative proof of an extension of (4) is given in [4, Satz 1.5].)

Here we show that an estimate analogous to that in (4) holds for each b_{k} with $|\mathbf{k}|=m-1 \quad(m \geqslant 2)$. By a counterexample we then demonstrate that neither products nor any rational functions of coefficients of (univariate) Chebyshev polynomials are enough to majorize the $b_{\mathbf{k}}^{\prime}$'s if $|\mathbf{k}| \leqslant m-2$.

2. Results and Proofs

We begin with an auxiliary result.
Lemma. Let $\mathbf{k} \in \mathbb{N}_{0}^{r}$ with $|\mathbf{k}|=m-1 \in \mathbb{N}$ be arbitrary but fixed; let $\overline{\mathbb{P}}_{m}^{r}:=\operatorname{span}\left\{\mathbf{x}^{\mathbf{k}^{\prime}}:\left|\mathbf{k}^{\prime}\right| \leqslant m, \mathbf{k}^{\prime} \neq \mathbf{k}\right\}$ denote that subspace of \mathbb{P}_{m}^{r} whose basis does not contain the monomial $\mathbf{x}^{\mathbf{k}}$. Define sets $J_{q}:=\left\{0, \ldots, k_{q}+1\right\} \backslash\left\{k_{q}\right\}$ and

$$
\begin{equation*}
V:=\left\{\sum_{q=1}^{r} \sum_{j_{q} \in J_{q}} x_{q}^{j_{q}} G_{j_{q}}\left(x_{1}, \ldots, x_{q-1}, x_{q+1}, \ldots, x_{r}\right)\right\} \tag{5}
\end{equation*}
$$

where the $G_{j_{q}}$'s are continuous functions on I^{r-1}. Then the inclusion $\overline{\mathbb{P}}_{m}^{r} \subset V$ holds.

Proof. Because of the arbitrariness of the functions $G_{j_{q}}$ it suffices to show that $\mathbf{x}^{\mathbf{k}^{\prime}} \in V$ if $\mathbf{k}^{\prime} \in \mathbb{N}_{0}^{r}$ and $\left|\mathbf{k}^{\prime}\right| \leqslant m$ (but $\mathbf{k}^{\prime} \neq \mathbf{k}$). The following observations concerning the components k_{q}^{\prime} of \mathbf{k}^{\prime} and k_{q} of \mathbf{k} are easy to verify: (i) if $\left|\mathbf{k}^{\prime}\right| \leqslant m-1$ (but $\mathbf{k}^{\prime} \neq \mathbf{k}$), then there exist k_{q}^{\prime} and k_{q} with $k_{q}^{\prime}<k_{q}$; (ii) if $\left|\mathbf{k}^{\prime}\right|=m$, then there exist k_{q}^{\prime} and k_{q} with $k_{q}^{\prime}<k_{q}$ or with $k_{q}^{\prime}=k_{q}+1$.

In those cases where $k_{q}^{\prime}<k_{q}$ for some $q \in\{1, \ldots, r\}$ the monomial $\mathbf{x}^{\mathbf{k}^{\prime}}$ can be written as $x_{q}^{k_{q}^{\prime}} G\left(x_{1}, \ldots, x_{q-1}, x_{q+1}, \ldots, x_{r}\right)$ with a suitable continuous function G and $k_{q}^{\prime} \in\left\{0, \ldots, k_{q}-1\right\} \subset J_{q}$. If $k_{q}^{\prime}=k_{q}+1$ for some $q \in\{1, \ldots, r\}$ we may write $\mathbf{x}^{\mathbf{k}^{\prime}}$ as $x_{q}^{k_{q}^{\prime}} H\left(x_{1}, \ldots, x_{q-1}, x_{q+1}, \ldots, x_{r}\right)$ with a suitable continuous function H and $k_{q}^{\prime} \in\left\{k_{q}+1\right\} \subset J_{q}$. In both cases $\mathbf{x}^{\mathbf{k}^{\prime}}$ can be identified with an element of V.

Theorem. Let $P_{m}^{r} \in \mathbb{P}_{m}^{r}$ with $\left\|P_{m}^{r}\right\| \leqslant 1 ;$ let $\mathbf{k} \in \mathbb{N}_{0}^{r}$ with $|\mathbf{k}|=m-1 \in \mathbb{N}$
be arbitrary but fixed and denote by \vec{r} the number of nonvanishing components k_{q} of \mathbf{k}. Then the coefficients $b_{\mathbf{k}}$ of P_{m}^{r} satisfy the estimate

$$
\begin{equation*}
\left|b_{\mathbf{k}}\right| \leqslant 2^{m-\bar{r}-1} \quad(|\mathbf{k}|=m-1) \tag{6}
\end{equation*}
$$

with equality if $P_{m}^{r}(\mathbf{x})=\prod_{q=1}^{r} T_{k_{q}}\left(x_{q}\right) \in \mathbb{P}_{m-1}^{r} \subset \mathbb{P}_{m}^{r}$.
Proof. Let \bar{T}_{m} denote the m th Chebyshev polynomial normalized so that its leading coefficient is 1. A theorem of Markov (cf. [2, pp. 231, 237] or [3, p. 53]) states that

$$
x_{q}^{k_{q}}-\bar{T}_{k_{q}}\left(x_{q}\right)
$$

is the best L^{∞}-approximation to the monomial $x_{q}^{k_{q}}$ on I from the space span $\left\{1, x_{q}, \ldots, x_{q}^{k_{q^{-}}}, x_{q}^{k_{q}+1}\right\}$. With the aid of Theorem 2.6.7 in [10] we infer from this that

$$
\begin{equation*}
\mathbf{x}^{\mathbf{k}}-\prod_{q=1}^{r} \bar{T}_{k_{q}}\left(x_{q}\right) \tag{7}
\end{equation*}
$$

is a best L^{∞}-approximation to \mathbf{x}^{k} on I^{r} from the set V as defined in (5) and hence also from $\overline{\mathbb{P}}_{m}^{r} \subset V$ (see the preceding Lemma) since (7) belongs to $\overline{\mathbb{P}}_{m}^{r}$. The required estimate is then obtained as follows:

$$
\begin{align*}
\left|b_{\mathbf{k}}\right| & \leqslant\left\|P_{m}^{r}\right\|\left(\inf _{\bar{P}_{m}^{r} \bar{P}_{m}^{r}} \max _{\mathbf{x} \in I^{r}}\left|\mathbf{x}^{\mathbf{k}}-\bar{P}_{m}^{r}(\mathbf{x})\right|\right)^{-1} \\
& \leqslant\left\|\prod_{q=1}^{r} \bar{T}_{k_{q}}\right\|^{-1}=\left(\prod_{q=1}^{r}\left\|\bar{T}_{k_{q}}\right\|\right)^{-1}=2^{m-\bar{r}-1} \tag{8}
\end{align*}
$$

(cf. [9, Satz 1.2] or [11, p. 86]).
In the light of the inequalities (1), (4) and (6) it is reasonable to ask whether the coefficients $b_{\mathbf{k}}$ in P_{m}^{r} with $\left\|P_{m}^{r}\right\| \leqslant 1$ will also be maximized by a product of coefficients of (univariate) Chebyshev polynomials if $|\mathbf{k}| \leqslant m-2$. If this were true one would have a complete multivariate analogue to Markov's inequalities (1). However, the answer is in the negative as we show by a counterexample.

Example. Let $m=4, r=2$ and put $\mathbf{k}=\left(k_{1}, k_{2}\right):=(k, l)$ and $\mathbf{x}=$ $\left(x_{1}, x_{2}\right):=(x, y)$. Our aim is to determine the largest coefficient $b_{(1,1)}$ (in absolute value) among all $P_{4}^{2}(x, y)=\sum_{0 \leqslant k+1 \leqslant 4} b_{(k, l)} x^{k} y^{l}$ with $\left\|P_{4}^{2}\right\| \leqslant 1$. Observe that for $\mathbf{k}=(k, l)=(1,1)$ we now have $|\mathbf{k}|=2=m-2$. It is interesting to note that the proof of our Theorem cannot be imitated here since $\overline{\overline{\mathbb{P}}}_{4}^{2}:=\operatorname{span}\left\{x^{k} y^{l}: 0 \leqslant k+l \leqslant 4, \quad(k, l) \neq(1,1)\right\}$ is no subset of the set V as defined in (5). In fact, we now have
$V=\left\{G_{0}(y)+x^{2} G_{2}(y)+H_{0}(x)+y^{2} H_{2}(x): G_{0}, G_{2}, H_{0}, H_{2}\right.$ continuous on $\left.I\right\}$ but from this set the monomials $x^{3} y$ and $x y^{3}$ cannot be recovered. To reach our aim we shall apply the same reasoning as in (8). To this end, we have to compute a best L^{∞}-approximation to $f(x, y):=x y$ on I^{2} from $\overline{\bar{\Gamma}}_{4}^{2}$. This function is symmetric and odd in each of its variables; a best approximation to f with the same properties belongs necessarily to the one-dimensional subspace

$$
\begin{equation*}
W_{A}:=\left\{w_{A}: w_{A}(x, y)=A\left(x^{3} y+x y^{3}\right), A \in \mathbb{R}\right\} \tag{9}
\end{equation*}
$$

of $\overline{\overline{\mathbb{P}}}_{4}^{2}$. It suffices to determine a best approximation to f from W_{A}. Investigating the function

$$
\begin{equation*}
F_{A}:=f-w_{A} \tag{10}
\end{equation*}
$$

on I^{2}, partial differentiation yields the result that for

$$
\begin{equation*}
A=A^{\prime}=\left(1+2^{1 / 2}\right) / 4 \tag{11}
\end{equation*}
$$

$F_{A^{\prime}}$ alternates at the eight points $(x, y)=(\pm 1, \pm 1)$ and $(x, y)=(\pm z, \pm z)$, where $z:=\left(2^{1 / 2}-1\right)^{1 / 2}$. To be specific, $F_{A^{\prime}}(x, y)=\left\|F_{A^{\prime}}\right\|=\left(2^{1 / 2}-1\right) / 2$ if

$$
(x, y) \in M^{+}:=\{(z, z),(1,-1),(-z,-z),(-1,1)\} \subset I^{2}
$$

and $F_{A^{\prime}}(x, y)=-\left\|F_{A^{\prime}}\right\|$ if

$$
(x, y) \in M^{-}:=\{(1,1),(z,-z),(-1,-1),(-z, z)\} \subset I^{2} .
$$

There is no $w_{A} \in W_{A}$ which is positive on M^{+}and negative on M^{-}. Indeed, if $w_{A}>0$ on M^{+}then in particular $w_{A}(z, z)>0$ and hence $A>0$. On the other hand, if $w_{A}<0$ on M^{-}then in particular $w_{A}(1,1)<0$ and hence $A<0$, a contradiction.

We conclude from [10, Lemma 2.2.1] that F_{A}, is the error-function of a best L^{∞}-approximation to f on I^{2} from W_{A}. Hence we obtain

$$
\begin{equation*}
\left|b_{(1,1)}\right| \leqslant\left\|P_{4}^{2}\right\|\left\|F_{A^{\prime}}\right\|^{-1} \leqslant\left\|F_{A^{\prime}}\right\|^{-1}=2\left(1+2^{1 / 2}\right) \tag{12}
\end{equation*}
$$

with equality if $P_{4}^{2}(x, y)=2\left(1+2^{1 / 2}\right) F_{A^{\prime}}(x, y)$.

3. Remarks

(i) An alternative generalization of the cases $k=m$ and $k=m-1$ in Markov's inequalities (1) to the polynomial space \mathbb{P}_{m}^{r} is to be found in [5].
(ii) A complete extension of (1) to multivariate polynomials is possible if we consider tensorproduct polynomials rather than polynomials with bounded total degree (cf. [6]).
(iii) The results presented here are excerpted from [4].

References

1. P. L. Chebyshev (Tchebychef), Théorie des mécanismes connus sous le nom de parallelogrammes, in "Euvres," Vol. I, Chelsea, New York, 1962.
2. V. Markov (W. Markoff), Über Polynome, die in einem gegebenem Intervalle möglichst wenig von Null abweichen, Math. Ann. 77 (1916), 213-258. [Russian 1892]
3. I. P. Natanson, "Constructive Function Theory," Vol. I, Ungar, New York, 1964.
4. H.-J. Rack, Doctoral dissertation, Universität Dortmund, April, 1982.
5. H.-J. Rack, A generalization of an inequality of V. Markov to multivariate polynomials, J. Approx. Theory 35 (1982), 94-97.
6. H.-J. Rack, Koeffizientenabschätzungen bei Polynomen in mehreren Variablen, Z. Angew. Math. Mech. 63 (1983), No. 5, T371-T372.
7. M. Reimer, On multivariate polynomials of least deviation from zero on the unit cube, J. Approx. Theory 23 (1978), 65-69.
8. T. J. Rivlin, "The Chebyshev Polynomials," Wiley, New York, 1974.
9. A. Schönhage, "Approximationstheorie," de Gruyter, Berlin, 1971.
10. H. S. Shapiro, "Topics in Approximation Theory," Lecture Notes in Mathematics No. 187, Springer-Verlag, New York/Berlin, 1971.
11. A. Timan, "Theory of Approximation of Functions of a Real Variable," Pergamon, Oxford, 1963.
